Numerical unsteady flow model simulation during the sluice closure of Caruachi Dam

نویسندگان

  • A. Marcano
  • C. Castro
  • E. Martinez
چکیده

Caruachi Hydroelectric Project conforms together with Guri, Tocoma and, Macagua the Lower Caroni Hydroelectric Development. Second Stage of River Diversion at Caruachi included diverting the Caroni River through 18, 5.5 × 9m sluices in the spillway lower body that after being closed by gates permitted the reservoir filling. In order to define the precise timing for closure of the sluices and to program the reservoir filling, an Unsteady Flow Onedimensional Numerical model was set up based on the model FEQ. The mathematical model was validated under unsteady state conditions using field observations. This paper describes the different criteria used to program the sluice closure and reservoir filling, according to the requirements to ensure dam safety and stability during the filling, the criteria to meet the system energy supply, the numerical model set up, its calibration and operation during the sluice closure maneuvers and filling of the reservoir and, the model–prototype conformity obtained during these processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Effect of Flow Pulses on Degradation Downstream of Hapcheon Dam, South Korea

The changes in channel geometry downstream of Hapcheon Dam, South Korea, are closely examined. Daily pulses of water from peak hydropower generation and from sudden sluice gate operations affect the 45-km reach of the Hwang River between the Hapcheon Reregulation Dam and the Nakdong River. From 1983 to 2003, the median bed-material size, d50, increased from 1.0 to 5.7 mm, and the bed slope of t...

متن کامل

Rapidly Varied Unsteady Flow in a Small Scale Dry Bed Model

In this paper the rapidly varied unsteady flow caused by the failure of a dam in a rectangular dry bed horizontal channel has been studied both theoretically and experimentally. Experiments with dam-break flows in smooth and rough channel have been carried out. Comparisons have been made between measured depth hydrographs at different stations along the channel and analytical solution of Ritter...

متن کامل

Numerical simulation of flood wave propagation due to failure of dam watersheds in fluent model

By numerical simulation of the phenomenon of failure of dams and the flow of their flow, it is possible to design more precisely the structures and their location. The purpose of this study was to investigate the wave propagation phenomenon due to the failure of the rocky mortar-watering dam in the Marivan sub-basin of Zarivar in two-dimensional and three-dimensional models using the Fluent mod...

متن کامل

A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows

Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002